Gold(I) complexes typically bond in a linear fashion; however, an increased valence can be achieved via ligand modulation. The most prevalent therapeutic gold complex, auranofin, contains a linear Au(I) center and has shown great potential in several diseases and conditions. On the other hand, the potential of three-coordinate Au(I) complexes have scarcely been probed as therapeutics. Reported here are the synthesis, characterization, and applications of novel three-coordinate Au(I) complexes. The degree of asymmetry varies between complexes depending on the Au-X ancillary ligands. This insight suggests that the degree of asymmetry influences the potency when incubated in various cancer cell lines. In addition, the coordination of bidentate phenanthroline ligand derivatives effect the symmetry by inducing varying degrees of distortion in the crystal structure. When the center Au(I) is bound to an N-Heterocyclic Carbene (NHC), the compound shifts from a distorted trigonal planar geometry to a distorted linear geometry. These complexes were used to probe glioblastoma, an aggressive head-and-neck cancer. When the center Au(I) is bound to biaryl dialkyl phosphine ligands, the geometry varies in symmetry, but the distorted trigonal planar geometry remains intact. Structure activity relationship studies were performed on these complexes in triple negative breast cancer cell lines. Previous research shows a disruption of mitochondrial dynamics when cancer cells were treated with three-coordinate Au(I) complexes, and the novel Au(I)-NHC library indeed disrupts mitochondrial dynamics. Mitochondria are the main energy production centers in the cell and are desirable therapeutic targets due to their implication in aging, inflammation, and cancer. The Au(I)-P library shows little mitochondrial disruption; instead, these complexes induce significant stress in the endoplasmic reticulum. The endoplasmic reticulum transports and folds proteins that allow the cell to function properly and synthesizes lipids and cholesterols. When the endoplasmic reticulum undergoes stress, the several signaling pathways, known as the unfolded protein response, activate, which can lead to lipid accumulation. Both a disruption of mitochondrial dynamics and an induction of endoplasmic reticulum stress can lead to apoptotic cell death. These effects were characterized by several in vitro and in vivo experiments.
Carboranes are electron-delocalized clusters containing as few as five and as many as fourteen boron and carbon atoms, the majority of which contain two cage carbons. The carbons in the cluster can be easily functionalized with alkyl and aryl phosphines for coordination to metal complexes. Described here is the synthesis of phosphine-functionalized carborane (DPPCb) containing three-coordinate Au(I) complexes. Taken as a whole, this work expands on the current three-coordinate gold(I) libraries and evaluates their in vitro and in vivo biological efficacy.