糖心vlog官方入口

Skip to main content

chemistry seminar

Design, synthesis, and anticancer properties of Ru(II) complexes with organometallic, 鈥渆xpanded鈥 bipyridine, and O,O鈥-chelating ligands

Abstract: Cancer is a worldwide public health crisis that requires new and improved drugs to be developed to extend survival rates and improve the quality of life for the patient. Platinum-based drugs are used in approximately 50% of cancer treatment regimens. These drugs are highly effective in many kinds of cancer; however, cancers can develop platinum resistance and these drugs have troubling side effects that reduced their use and efficacy. To overcome these disadvantages, many other metals have been studied for their anticancer properties. Notably, the anticancer properties of ruthenium-based agents have drawn considerable attention with multiple ruthenium complexes entering clinical trials. Unlike platinum complexes, which are flat (square planar), ruthenium compounds can adapt a multitude of 3D structures, which leads to many possible mechanisms of actions.

One of the most promising applications of ruthenium(II) complexes is their ability to act as photodynamic therapy (PDT) and photoactivated chemotherapy (PACT) agents. Both of these methodologies use light to 鈥渢urn on鈥 a non-toxic light-sensitive drug to form highly cytotoxic species that can kill cancer cells. These methods are appealing as they present a way to control the cytotoxic species to spatially isolated regions of the body. This control can reduce damage to healthy cells and reduce harmful side effects. Ruthenium(II) polypyridyl complexes are especially well suited for these applications as they have highly tunable excited states that can be tuned with careful ligand modification and selection.

Ruthenium complexes have also shown great promise as non-light-activated anticancer drugs. The coordination of small pharmacologically active molecules to ruthenium(II) polypyridyl complex is one promising method to develop potential ruthenium-based drugs. This strategy aims to create drugs that are greater than the sum of their parts by achieving synergistic mechanisms of action not achievable with either component individually.

Here we report on the synthesis and anticancer properties of Ru(II) complexes designed for PDT, PACT, and light-independent anticancer mechanisms. Highly potent lead compounds are identified and explored for PDT and light-independent anticancer applications. These lead compounds incorporated organometallic ligands with ruthenium(II) polypyridyl scaffolds to modulate their excited-state properties to produce improved PDT agents. The integration of O,O-chelating ligands into various ruthenium(II) scaffolds produced a range of complexes suitable for PDT, PACT, and light-independent mechanisms. Notably, the majority of these complexes possessed low submicromolar potency and low in vivo toxicity. Our results presented here show multiple new strategies for making new ruthenium(II) anticancer agents. These new methods have promising implications for bioinorganic research because they further expand our understanding of how to use ruthenium(II) complexes for biological applications.


Date:
-
Location:
Zoom
Tags/Keywords:

Rational Design of Small Molecule Disruptors of Protein-Protein Interactions: PD-1/PD-L1, c-Myc, Arid4B

Abstract: Protein-protein interactions (PPIs) are vital to many biological processes, including gene expression, and immune reactions to pathogens. There are approximately 650,000 PPIs in humans with pertinent physiological functions. Aberrant expression of PPIs leads to improper function and contributes to a plethora of disease conditions including cancer. Thus, PPIs represent an enormous target space for drug discovery and chemical probes. Direct targeting of clinically relevant PPIs with small molecules remains an unmet medical need. The development of small-molecule inhibitors of PPIs is a challenging enterprise and, in most cases, considered undruggable due to large protein surfaces, lack of deep binding pockets, and enzymatic activities. Despite these limitations, significant progress has been made in the area of compound development that selectively targets oncogenic PPIs and those underlying inflammation. This talk will focus on the identification and rational design of small-molecule inhibitors of PPIs, as applied to distinct protein targets, including the proto-oncogene product c-MYC, which dimerizes with MAX; the immunotherapeutic target programmed death receptor (PD-1) and programmed death ligand-receptor (PD-L1), and the epigenetic target AT-rich interacting domain 4B (ARID4B). The fundamentals of the small-molecule drug discovery process will be covered. More so, the use of in silico methods and synthetic chemistry to discover gold-based small-molecule covalent inhibitors of the intrinsically disordered protein, MYC, as well as the first-in-class small molecule inhibitors of ARID4B will be presented. This talk will also shed light on the medicinal chemistry of the recently identified dual-action small molecule inhibitors that perturb both Poly(ADP-ribose) polymerase (PARP) and PD-1/PD-L1 pathways.

Attend the seminar .

Date:
-
Location:
Zoom
Tags/Keywords:

Developing Synthetic Strategies for Multifaceted Applications of Stable Gold-Based Complexes

Abstract: Development of stable gold-based complexes has been a rapidly advancing field due to the popularity of gold complexes, particularly for use in biomedical applications and catalytic transformations. Given that auranofin, a gold(I) complex having FDA approval for the treatment of rheumatoid arthritis has been the only clinically relevant gold-based agent, the need for stable gold-based molecules is at an all-time high. Herein are reported synthetic strategies used for the development of new classes of gold(I) and gold(III) complexes for advancement in mitochondrial modulation for use as chemotherapeutics as well as application to gold catalysis due to the unique geometry of complexes presented within. Mitochondrial structure and function are integral to maintaining mitochondrial homeostasis and are an emerging biological targets in aging, inflammation, neurodegeneration, and cancer. Meanwhile, targeting cellular metabolism has emerged as a key cancer hallmark that has led to the therapeutic targeting of glycolysis. The study of mitochondrial structure and its functional implications remain challenging partially because of the lack of available tools for direct engagement, particularly in a disease setting. Furthermore, agents that target dysfunctional mitochondrial respiration for targeted therapy remain underexplored. Both the synthesis and characterization of highly potent organometallic gold(III) complexes supported by dithiocarbamate ligands as selective inhibitors of mitochondrial respiration and a gold-based approach using tricoordinate gold(I) complexes to perturb mitochondrial structure and function for selective inhibition cancer cells have been elucidated. Mitochondrial targeting and inhibitory effects are characterized using a plethora of both in vitro and in vivo experiments. While developing the tricoordinate framework, the unique geometry led to the pursuit of identifying other applications for these unique gold(I) complexes. The development of oxidant-free, gold-catalyzed, cross-coupling reactions involving aryl halides have been hampered by the lack of gold catalysts capable of performing oxidative addition at Au(I) centers under mild conditions or without some external oxidant. The catalytic method developed is insensitive to air or moisture. The asymmetrical character of the air-stable gold(I) complex is critical to facilitating this necessary orthogonal transformation. Taken everything together, rational design of novel gold complexes with unique binding motifs and geometry provide a building block for future applications with a diverse array of applications.

Attend the seminar via Zoom by .

Date:
-
Location:
CP-114B, Zoom
Tags/Keywords:

Mass spectrometry method development for the discovery and characterization of secondary metabolites

Abstract: Secondary metabolites are organic compounds produced by an organism for reasons other than growth and development. In plants, secondary metabolites generally act as defense agents produced to deter predators and inhibit other competitive species. For humans, these compounds can often have a beneficial effect and are pursued and utilized as natural pharmaceuticals. The development of sensitive, high-throughput analytical screening methods for plant derived metabolites is crucial for natural pharmaceutical product discovery and plant metabolomic profiling. Here, metabolomic profiling methods were developed using a microfluidic capillary zone electrophoresis device and evaluated against traditional separation approaches. An alkaloid screening assay was constructed to analyze transgenic mutant plant extracts for novel metabolites. Putatively identified novel features were detected, elucidated, and then isolated and purified for pharmaceutical evaluation. Additionally, methods for the analysis of polyphenolic plant-derived secondary metabolites, such as cannabinoids, were also developed and evaluated. In this case, the occurrence of cross-instrumental variation was addressed, given the tight legal restrictions regar