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Abstract 

Menadione (2-methyl-l ,Cnaphtoquinone) is cytotoxic to hepatocytes. In order to begin to 
investigate the changes in the physical state of membranes induced by this cytotoxic sub- 
stance, electron paramagnetic resonance (EPR) spin-labeling techniques were used in conjunc- 
tion with spin labels specific for cytoskeletal proteins, bilayer lipids, or cell-surface sialic acid 
or galactose to investigate erythrocyte membranes. We studied the molecular effects of oxida- 
tion of 200 PM menadione on the different membrane domains. The major findings are: (1) 
menadione increases protein-protein interactions (P < 0.001) of cytoskeletal proteins, (2) 
there is a slightly significant increase in the rotational motion of spin-labeled sialic acid (P 
c O.OS), while (3) the physical state of galactose residues was unaffected by menadione. Since 
glycophorin is coupled to the major cytoskeletal protein, spectrin, by protein 4.1, we suggest 
that menadione-induced oxidation could alter the conformation of protein 4.1. As a conse- 
quence, single or multiple sites of weakness could be induced leading to the alteration of the 
interactions of the cytoskeletal network and its anchoring domains in the membrane. These 
results are discussed with reference to possible mechanisms involved in the cytotoxic action 
of menadione. 
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1. Introduction 

Chemicals such as menadione (Zmethyl- 1 ,Cnaphtoquinone) induce cytotoxicity 
in hepatocytes [l] and other cellular systems. The toxic action of such chemicals in 
cells is partially or completely due to their capacity to stimulate superoxide produc- 
tion by generating considerable amounts of oxygen reactive species or by arylation 
of cellular thiols [2]. 

Menadione 
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nation as described [22]. Most of the spin label is bound to the glycoconjugates of 
the major transmembrane protein (Band 3), Band 4.5, and glycophorin [22]. 

2.4. ~~e~i~g of proteins and lipids 
The cytoskeletal proteins are selectively and covalently spin labeled with MAL-6. 

Immunological studies of MALd-labeled ghost membranes suggest that nearly all 
the spin label is bound to the major erythrocyte cytoskeletal membrane, spectrin 
[reviewed in 17 and 1X]. Lipid bilayers are labeled with a lipid-specific spin label 5- 
NS as previously described [l&19]. 

2.5. Spectra 
All EPR spectra were recorded at room temperature in a room with constant tem- 

perature and humidity on a Bruker ESP-300 EPR spectrometer with computerized 
data acquisition and analysis capabilities. Typical spectrometer conditions are given 
in the membra1 
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Table I 
Effect of menadionea on the physical state of erythrocyte membrane skeletal proteins as monitored by 
the WIS ratio of MAL-6b 

(W/&mtrol - (W~%enadione N PC 

0.75 f 0.29 7 < 0.001 

a2OO pM final concentration. 
bMean difference f S.D. is presented. 
cP value calculated by a two-tailed Student’s t-test of paired data with the null hypothesis that this differ- 
ence is zero, i.e., that menadione had no effect on the W/S ratio of MAL-6 relative to the control. 

3. Results 

3.1. MAL-6 labelinbn  Tr 5.76 0  TD 1Sa4888 0of had 35linbn  Tr 5.76 0  TD 11o0.1787  Tc 0.7  Tw (of ) Tj0  Tr 9.052Tw (f0 76  Tr 5.76 0  TD35 Tr -310.336.56 1.T.0822  Tc 0.0213  Tw (data ) TjTw (Tr 18.720  T0 14.64 0 93  Tr -0protein-specific81  Tc 0.03810 Tw (the ) Tj0  T057 14.64 0 57 14. Tr -0.0108  Tc 0.010Tw (0.29 ) Tj0  Tr1915.36 0  T1915.3 Trspi138  Tc 0.078  that ) Tj0  Tr 166 Tj0  Tr TD 3  Trof ) 38  Tc 0.078 6w (that ) Tj0   0  T 17.76 0  T5c 0.4a0bindTr /F5 9.6  T 0. Tw (pM ) Tj0  Tr 35 0  TD 3 35c 0.4a0co -0 Trl835  Tc -0.1446  Tw (i.e., ) Tj0 134 0  TD 3 3Tc 0.4a01061  Tc 0.046Tw (no ) Tj0  Tr 11.534 0  TD 3 3Tc 0.4a0SH756  Tc 0.0156 inbn  Tr 5.76 0  TD35 Tr -310.336.56 1.group03  Tc -0.03  5  Tw (data ) TjTr 878 0  TD 3878 0  -0.0871  Tc 0.027-341. Tw-391  Tmenadione h a d  t o  had i s  o f  n o  the t h e  p a i r e d  t h e  t h e  
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In contrast, spermine, which crosslinks spectrin to the major transmembrane protein 
Band 3, i.e., increases membrane protein-protein interactions, reduces the segmental 
motion of spin-labeled proteins and causes a decrease in the W/S ratio [25]. 

Each sample was incubated with menadione for 1 h at room temperature before 
acquiring spectra. Different concentrations of menadione all decreased the W/S ratio 
relative to controls, suggesting that this oxidant increases protein-protein interac- 
tions in erythrocyte membranes. Based on the dose-response data, we chose 200-PM 
menadione concentrations for most of our experiments, the same concentration used 
by others [l 11. Table 1 shows that200 PM menadione decreased the W/S ratio rela- 
tive to controls with high significance (P < O.OOl), suggesting that this oxidant in- 
creases protein-protein interactions in erythrocyte membranes and affects spectrin, 
where most of the MAL-6 is found. 

3.2. 5-NS labeling 
We investigated whether menadione induces alterations of lipid bilayers. To test 

this idea, we employed the lipid-specific spin label 5-NS to assess the effect of mena- 
dione on the physical state of the lipid bilayer of human erythrocyte membranes. 
This lipid-specific probe undergoes rapid anisotropic motion about the long axis of 
the probe and orientational flipping of the principal axis of the nitroxide between 
parallel and perpendicular orientations relative to the membrane normal [17,18]. 
The half-width at half-height (HWHH) of the MOhalf-height bilayer= -4.055  Tw 9.f-height p.0336  Tw 2(HWHH) Fig0  Tr -319.44 TD 3  Tr -0.1056  T0380.0144 Tw3(of ) Tj20  Tr 42.96 0  TD 3  Tr -0.0461 T0380.0144  Tw3(of ) Tj0  Tr 19.68 09.f-height MOmembrane motion the the motion and 

MOthe the the of The 

MO the The  -0.0672  Tc380.0144 Tw3(of ) Tj Tj0  Tr 54.48 0D 3  Tr -0.0528  Tc40.0528  Tc40.052 Tjemploye0  Tr 18.96 044D 3  Tr -0.2784  Tc -0.0144 Tw (MO) Tjin  Tr 10.56 0  3  Tr -0.0704 Tc 0.0192  Tw 2he MOt h e  t h e  the t h e  
The 

t h e  The M O t h e  
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3.3. Tempamine labeling 
Protein 4.1 anchors the cytoskeletal network to the cell membrane by binding to 

the major integral sialoglycoprotein (glycophorin) from one side and to spectrin on 
the other. If the oxidant menadione affects the 2 binding sites then the membrane 
integrity will be affected. Therefore, the menadione-induced increase of cytoskeletal- 
protein interactions, protein 4.1 in particular, might be expected to alter the motion 
of extracellular sialic acid residues; glycophorin contains up to 70% of the membrane 
sialic acid. To test this possibility, sialic acid specific spin-labeling procedures were 
employed [20]. An EPR spectrum of the tempamine spin 
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Table 3 
Effect of menadiones on the apparent rotation correlation timeb of spin-labeled sialic acid relative to un- 
treated controls 

~7ah4en*dionc - (7Jcont,l 

(0.53 f 0.65) x lo-lo s 

s200 nM final concentration. 
bMean difference A S.D. is presented. 

N pf 

9 < 0.05 

‘P values are calculated by a two-tailed Student’s r-test of paired data with a null hypothesis that this 
difference is zero, i.e., that menadione had no effect on the motion of spin labeled siahc acid. 

dues, found mostly on Band 3 and Band 4.5, were also labeled with tempamine [22] 
in separate experiments. Again, the apparent rotational correlation time, r,, is used 
to analyze the spectrum.. Contrary to our findings in glycophorin, Table 4 suggests 
that menadione has no statistically significant effect on the confo~ation of Band 
3 and/or Band 4.5, also consistent with the notion of Band 4.1 oxidative damage by 
menadione. 

4. Diaeussion 

Greater than 90% of the protein 4.1 remains associated with the membrane under 
the low ionic strength conditions that remove spectrin [12,13]. Therefore, protein 4.1 
would appear to have a membrane association site distinct from its known interac- 
tion with spectrin and actin. It has been reported that protein 4.1 binds preferentially 
to glycophorin [12]. Both of these observations suggest that protein 4.1 may be in- 
timately involved in maintaining membrane integrity. 

The effect of menadione on glycophorin is less than that on the cytoskeletal pro- 
teins (a 10% increase vs. a 17% decrease of the respective control parameter 
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tions and decreased molecular motion of sialic acid on glycophorin. These parallel 
spin label techniques have suggested that menadione leads to the oxidation of the 
erythrocyte membrane by interacting with certain, perhaps specific, protein com- 
ponents. The physical state of galactose residues was unaffected by menadione, in 
sharp contrast to that of the sialic acid. 

A number of physiological or pathological processes might cause oxidant damage 
to red cells, and therefore it is important to determine the mechanism for membrane 
failure in an oxidative environment. Such damage may result in hemolysis, and 
therefore cytoskeletal protein damage may be a common pathway by which certain 
unstable hemoglobinopathies or antioxidant-compromised erythrocytes acquire 
membrane abnormalities [26]. Rank et al. [27] have shown that most of the 
cytoskeletal proteins in sickle cell membranes contained oxidized or blocked thiols. 
Schwartz et al. [28] strongly suggested that sickle protein 4.1 has sustained oxidative 
damage in vivo which is responsible for the membrane abnormalities reported in 
sickle erythrocytes. Parola et al. [29] reported that biliary epithelial cells and 
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