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Proteine=ar bonyl measurement

Protein carbonyls are an index of protein oxidation and were
determined as described previously (Berlett and Stadtman, 1997).
Briefly, 5 uL of synaptosome preparations (4 mg/mL) were incu-
bated at room temperature with 10 mM 2,4-dinitrophenylhydrazine
in the presence of 5 uL of 12% SDS for 20 min at room temper-
ature. The samples were neutralized with 7.5 uL of the neutral-
ization solution (2 M Tris in 30% glycerol). Two hundred fifty
nanograms of protein sample was loaded into the wells of the slot
blot apparatus. Proteins were transferred directly to nitrocellulose
paper under vacuum pressure and standard immunochemical
techniques were performed. Membranes were blocked in the
presence of 3% bovine serum albumin (BSA) in TBS-T (10 mM
Tris—=HCI, pH 7.5, 150 mM NaCl, 0.05% Tween 20) for 1 h,
followed by incubation with rabbit polyclonal antibody anti-DNP
(1:100) for 1 h. The membrane were washed three times with
TBS-T and incubated with alkaline-phosphatase (AP)-conjugated
secondary antibody for 1 h. The specificity of primary antibodies
has been previously demonstrated by experiments performed in
our laboratory (Aksenov et al., 2001). Samples were developed
using SigmaFast Tablets (BCIP/NBT) substrate, and blots were
scanned into Adobe Photoshop (Adobe System, Inc., Mountain
View, CA, USA) and quantitated with Scion Image (PC version of
Macintosh compatible NIH Image).

3-NT levels



mediated protein oxidation. Fig. 2a shows the carbonyl levels
in synaptosomes isolated from saline-injected gerbils and
from D609-injected gerbils, and then treated in vi{o with AB
(1-42). The level of carbonyls was found to be significantly
higher (P<<0.001) in synaptosomes obtained from saline-
injected gerbils and treated with AB (1-42). D609 treat-
ment protects synaptosomes against A (1-42)-induced
oxidative protein damage (P<0.004). As a control, synap-
tosomes were first treated with NaBH,, which reduces
carbonyls to alcohols. Reaction with 2,4-dinitrophenyl-
hydrazine (DNPH) is expected not to occur; hence, no
anti-DNP hydrazone antibody binding is expected. We
demonstrated this result previously (Sultana et al., 2006),
and confirmed this finding in the present study (data not
shown). Thus, NaBH, pretreatment resulted in no antibody
binding, demonstrating the specificity of the immunochemi-
cal detection of carbonyls by our procedures. In order to
demonstrate the specificity of D609, two other AB pep-
tides, AB (1-40) and the nontoxic reverse of AB peptide
[AB (42-1)] were used. Fig. 2b shows the carbonyl levels in
various AB peptide treated synaptosomes and in synapto-
somes isolated from D609-injected gerbils subsequently
treated with AB (1-42), AB (1-40) and AB (42-1) respec-
tively. As shown Fig. 2b, D609 treatment protects synap-
tosomes against AB (1-42) and AB (1-40)-induced oxida-
tive protein damage (P<0.05). There was no significant
increase in protein carbonyl levels in synaptosomes iso-
lated from saline-injected and D609-injected gerbils sub-
sequently treated with AB (42-1).

The antioxidant properties of D609 were further con-



that INOS expression is induced by oxidative stress and
that antioxidant compounds suppress its expression either
at gene level or at protein level (Ayasolla et al., 2004;
Calabrese et al., 2004). In the present study, we observed
that both INOS and 3-NT levels were increased in AB
(1-42)-treated synaptosomes and that D609 treatment
showed protection against the AB (1-42)-induced increase
of INOS and 3-NT levels.

p ISC4SSION

Oxidative damage is present in the brains of patients with
AD, and is observed within every class of biomolecules,
including nucleic acids, proteins, lipids and carbohydrates
(Butterfield et al., 2001; Butterfield and Lauderback, 2002;
Castegna et al., 2003; Good et al., 1996; Aliev et al., 2004;
Lue et al., 2005). Our laboratory has suggested a compre-
hensive model for neurodegeneration in AD combining two

established notions: i) elevated oxidative stress in AD
brain; i) centrality of AB in the cause and consequences of
this dementing disorder (Butterfield and Lauderback, 2002;
Castegna et al., 2003). Many additional studies from dif-
ferent laboratories have supported the view that oxidative



products may be responsible for damaging enzymes criti-
cal in neuronal function (Butterfield et al., 2003; Varadara-
jan et al., 2000).

In the present study, we showed the ability of in vivo-



glutamate toxicity and ionizing radiation-induced oxidative
stress in lymphocytes by maintaining intracellular GSH ho-
meostasis (Zhou et al., 2001). The results presented in this
paper demonstrated that in vivo injection of D609 was effec-
tive in reducing protein oxidation, lipid peroxidation and ROS
production induced by AB (1-42) treatment.

The concept that AB induces lipid peroxidation is a key
component of the AB (1-42)-associated free radical model
for neurodegeneration in AD (Butterfield 1997; Lauderback
et al.,, 2001; Varadarajan et al., 2000). HNE alters the
conformation of transmembrane and cytoskeletal synapto-
somal proteins (Esterbauer et al., 1991; Subramaniam et
al., 1997). GSH blocks the damaging effects of this unsat-
urated aldehyde on synaptosomal proteins (Pocernich et
al., 2000, 2001). As noted above, D609 binds to «,B-
unsaturated aldehydes to prevent their toxicity (Lauder-
back et al., 2003). Taken together, these data support the
notion that the ability of D609 to exert its protective effects
against AB-associated lipid peroxidation involves its direct
binding to HNE thus providing an efficient tool for detoxi-
cation. Consistent with the AB-associated free radical pro-
cess, AB (1-42) induces protein oxidation, indexed by the
increase of carbonyl levels and of nitrotyrosine residues.
Oxidative modification of crucial proteins results in alter-
ation of their structural and functional properties, eventu-
ally leading to synapse loss and neurodegeneration.

There is compelling evidence supporting that en-
hanced pro-inflammatory activities induced by A are as-
sociated with the pathogenesis and/or progression of AD,
and that some anti-inflammatory agents protect neurons
against AB-induced neurotoxicity (Breitner, 1996). One of
the principal enzymes that plays a pivotal role in mediating
an inflammatory response is iINOS. iNOS is mainly local-
ized in astrocytes and microglia, and catalyzes the oxida-
tive deamination of L-arginine to produce nitric oxide (NO),

a potent pro-inflammatory mediator. In Alzheimer’s tissue,
pro-inflammatory iNOS is notably up-regulated and colo-
calized in AB plaques. Several studies have demonstrated
that AB stimulates microglial and astrocytic iNOS induction



GSH analogs, mimetic or precursors have been used in
patients or animal models. Based on the results presented
in the current paper and on our previous studies (Sultana
et al.,, 2004), we hypothesized that D609 is a potential
brain-accessible GSH-mimetic compound. This hypothesis
that D609 is a GSH mimetic that is itself not GSH is further
supported by the finding that D609 treatment does not lead
to an increase of brain GSH levels (Table 1).

The ability of in vivo D609 to prevent Ap-induced oxi-
dative stress could also be related to its property as an
inhibitor of PC-PLC and sphingomyelinase. Most of D609
biological activities (antitumor, antiviral, anti-inflammatory)
have been largely attributed to the inhibition of PC-PLC
and sphingomyelinase. However, the identification of D609
as a potent antioxidant implies that D609 may exert some
of the reported activities by its antioxidant properties. The
biological activity of PC-PLC and sphingomyelinase in-
volves regulation of Ca*? homeostasis through the pro-
duction of ceramide. Since AB may lead to altered Ca*?
homeostasis in neurons (Mattson et al., 1993), it is rea-
sonable to argue that the protective effects of D609 could
rely also on its inhibitory activity on PC-PLC or sphingo-
myelinase. Thus, we suggest that multiple biological func-
tions of D609 could potentially contribute to counteract
AB-driven neurotoxicity in the brain. The presence of the
free thiol group in the molecule confers to the xanthate a
strong reducing property (Lauderback et al., 2003; Rao,
1971; Sultana et al., 2004) that is undoubtedly responsible
for the antioxidant activity of D609.

Considering that AB (1-42) is a potent inducer of oxi-
dative stress and that the deposition of this peptide can
induce the cascade of pathological changes occurring in
AD, many attempts to test effective protection by antioxi-
dants are currently under investigation. However, many
clinical trials are unsuccessful due to a low brain-accessi-
ble capability of the antioxidant compounds tested. Based
on these notions, searches for new potential antioxidant
compounds could be of relevance for future directions of
AD treatments.

CONCLjSION

In conclusion, the present study demonstrated the ability
of D609 to act as a potent antioxidant in vivo, thereby
providing neuroprotection against A-induced oxidative
stress. Further studies are required to gain insight into the
potential use of D609 in the treatment of AD and other
oxidative stress-related disorders. Investigations of the use
of D609 on animal models of AD are in progress.
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