NeuroReport 6, 489-492 (1995)

Synthetic β -amyloid peptides (A β s) demonstrate lot-tolot variation in toxicity that has not been adequately explained. Studies from our laboratory have shown that A β toxicity may result from the ability of the peptide to promote oxidation reactions. Both A β (1–40) and A β (25– 35) inactivate the oxidation-sensitive enzyme glutamine synthetase (GS) and generate electron paramagnetic resonance (EPR)-detectable products upon reaction with the spin trap phenyl-tert-butylnitrone (PBN). We now report Amyloid β -peptide spin trapping I: peptide enzyme toxicity is related to free radical spin trap reactivity

attenuated toxicity with respect to peptide-induced GS inactivation, produce qualitatively different EPR spectra when the peptides are incubated with PBN. The results suggest an interpretation of conflicting observations regarding the toxicity of synthetic A β s, and that investigators must be careful to assess the reactivity state of A β being studied.

Key words: Amyloid; Oxidation; Spin trapping; Phenyl-tert-butyl nitrone

Kenneth Hensley, Marina Aksenova,¹ John M. Carney,¹ Marni Harris¹ and D. Allan Butterfield^{CA}

Department of Chemistry and Center of Membrane Sciences and ¹Department of Pharmacology, University of Kentucky, Lexington, KY 40506, USA

CA Corresponding Author

Introduction

 β -Amyloid peptides (A β s) are neurotoxic peptides postulated to be involved in the etiology of Alzheimer's disease (AD). The mechanism of neurotoxicity of

Anomalous A β samples, which demonstrated reduced toxicity toward GS, reacted with PBN to produce a four-line EPR spectrum. Furthermore, A β (25–35) samples which showed essentially no toxicity toward GS, generated no significant EPR signal upon incu-

Miller et al⁸ and corrected for non-specific glutaminase activity by comparison of activity in the presence and absence of ADP and arsenate. GS enzyme (sheep brain, Sigma) and A β (25–35) were solubilized to a final concentration of 0.014 mg ml⁻¹ and 1 mg ml⁻¹, respectively, and coincubated in deionized water for 1 h at 37°C

nate this reactive, highly toxic class of peptide A β (25–35)-A to distinguish it from four-line generating and EPR inactive (and correspondingly non-toxic) peptide variants discussed presently.

In the course of our investigations, we received shipments from Bachem of $A\beta(25-35)$ which reacted with

2 mg ml⁻¹ and 37°C for 24 h prior to GS addition.

HPLC/amino acid analysis: Amino acid analysis was performed on a Beckman 6300 HPLC amino acid analyzer utilizing orthophthalaldehyde (OPA) post-

intensities 1:2:2:1, Fig. 2B), in contrast to the three-line pattern routinely observed. For this spectrum, $a_N = 14.5$ G and $\Delta H = 0.9$ G. This variation of A β (25–35) was found to be approximately half as toxic as the norm

	A . A M.	B Lot 2J744	Lot ZL650	
	י אייצען אוייאען הארוער ווייניאל אייני		 	
			-	
Y	,			
1——————————————————————————————————————				
h				
			<u>}</u>	

	neuro (*) eport				K. Hensley et al		
	Table 1. Amino acid analysis				reactivity among variably toxic synthetic $A\beta$ peptides.		
	7						
-	- / 		•				
					1		
	-						
_ 1 =							
	1						
	<u> </u>						
*							
			-				
		(dry)	(PBS)	(PBS/PBN)	_should perform notency assays to determine the reso-		
<u>, • </u>	GLY 3 SER 1	2.57 0.76	2.81 ± 0.23 0.70 ± 0.03	3.20 ± 0.21 0.58 ± 0.06	tivity state of individual A eta samples prior to further		
	ASN 1 LYS 1 ALA 1	1.05 1.22 1.28	0.98 ± 0.03 1.00 ± 0.13 1.22 ± 0.04	0.90 ± 0.08 0.81 ± 0.10 1.27 ± 0.06	experimentation. These observations also indicate that EPR spectroscopy offers such a means to ascertain the		
	ILE 2 LEU 1 MET 1	1.80 1.23 0.90	1.64 ± 0.08 1.11 ± 0.06 0.62 ± 0.18	1.91 ± 0.10 1.36 ± 0.37 1.06 ± 0.08	relative potency of $A\beta$ peptides. It is not yet clear whether the differences in $A\beta$ reactivity stem from differences in the nature of the pri		
۲	MISTOY-						
7							
					·		

Amino acid content (mol residue per mol peptide) in AB(25-35)-A dry

mary peptidyl radical center or, rather, from variable