


deÞned as the potential stage of AD in which the patient
presents as a fully functional individual in cognitive exams
such as MMSE, yet the growing pathology within the brain
tissue is present, but likely unknown precluding early death
from a non-neurodegenerative means (141,144,166). MCI has
been described as being the transition stage between normal



genetics, and discoveries from cell biology (13,16,38,169). The
increased hydrophobicity of A b42 possibly allows this pep-
tide to integrate within the lipid bilayer initiating the process
of cell damage. Schmidt et al. using mass-per-length mea-
surements and electron cryomicroscopy with 3-dimensional
reconstruction on an Ab(1Ð42) amyloid Þbril morphology
showed that the Ab(1Ð42) Þbril morphology has only one
protoÞlament, in contrast to A b(1Ð40) Þbril forms two pro-
toÞlaments. Further, Ab(1Ð42) showed pairs ofb-sheets at the
cores of the two protoÞlaments making up a Þbril (135).

Once Ab is produced, individual amyloid peptides (A b42
in particular) aggregate to form small assemblies of dimers,
trimers, oligomers, protoÞbrils, and large insoluble Þbrils.
Studies showed poor correlation between plaque load and
cognitive function (113). Recently, the role of Ab has been
amended to suggest that soluble Ab oligomers are the more
toxic species. Further research has indicated that the soluble
oligomers and not the plaques correlate well with cognitive
decline (44,53,54,117,165,168). Moreover, Ab levels and tem-
poral NFT density have been shown to be elevated to a higher
degree in LAD when compared with MCI and EAD, which
are likewise elevated compared with control (9,11,58,108,159).
The relationship between Ab-containing SPs and NFT for-
mation has been debated, but recently Jinet al.reported that
with the addition of soluble A b dimers, tau became hyper-
phosphorylated before cytoarchitectural disruption was ob-
served, followed by subsequent neuritic degeneration.
Interestingly, this process was exacerbated with the over-
expression of human tau and prevented with the knockdown
of human tau (74). Soluble Ab has also been shown to mod-
ulate the pro-survival PI3K/AKT-GSK3 b pathway, inhibiting
various neurotrophin effects including that of a-sAPP (73).
These lines of evidence provide insight into the progression of
AD and a potential causal relationship between two known
pathological hallmarks of this disease.

Genetic Evidences for A b Toxicity

The importance of APP and consequently Ab in AD path-
ogenesis has emanated from genetic evidence of patients with
familial AD (FAD) and Down syndrome (DS). After the
cloning of theb



which A b1Ð42inserts as oligomers into the bilayer and serves
as a source of ROS, has been shown to initiate lipid perox-
idation (Figs. 4 and 5) (16,17,93,94,101). For a comprehensive
review on oxidative/nitrosative stress in the cell, the reader is
referred to the following articles (28,29,151).

Oxidative Stress at Different Stages of AD

Oxidative stress and its effects have been found as early as
MCI in the progression toward AD. Studies conducted in our
laboratory and others have found that oxidative stress
markers for protein oxidation/nitration, such as protein
carbonyls and 3-nitro-tyrosine, are elevated in brains from
subjects with aMCI (6Ð8,25,83). More recently, it has been



Increased protein-bound 4-hydroxy-nonenal (HNE) and
free HNE, TBARS, and MDA were found, and a higher iso-
prostane (F2



mechanism (145). Further, the presence of methionine sulf-
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