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Abstract. Alzheimer disease is a common age-related neurodegenerative disease characterized pathologically by senile plaques,
neurofibrillary tangles, synaptic disruption, and progressive neuronal deficits. The senile plaques contain amyloid-β (1–42) and
amyloid-β (1–40), that has been shown by a number of laboratories to induce oxidative stress and as well as neurodegeneration,
although the exact mechanisms remained to be defined. Our laboratory showed an increased oxidative stress in AD and MCI
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gen species, and neurotoxic products [54,125]. Sev-
eral lines of evidence have shown that the NF-κB in
microglia is activated byβ-amyloid [30,67]. Further,
activation of NF-κB can stimulate increased expres-
sion of TNF-α, IL-1, IL-6, NOS etc [1,33], that could
eventually lead to increased modification of the pro-
teins. However, in the absence of additional research,
the exact role of inflammation in AD pathogenesis is
unclear.

Further mutations of the genes for presenilin-1 (PS-
1), presenilin-2 (PS-2) and amyloid precursor pro-
tein (APP) have been observed in inherited AD.
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tide, Aβ (40-1), which is non-neurotoxic, forms a Tyr
free radical. This latter is an absolute requirement by
those who propose Cu(II) binding and reduction as the
source of the oxidative stress and neurotoxic properties
of Aβ [56].

In addition, Aβ (1–42) can bind to receptors on
neuronal and glial cells, e.g., theα7-nicotinic acetyl-
choline receptor, neurotrophin p75 receptor, the N-
methyl-D-aspartate receptor, the receptor for advanced
glycation end products (RAGE) [121,123], and oth-
ers, forming calcium and potassium channels in cell
membranes [5,41], decreasing glucose transport across
brain endothelial cells [7], and activating the release
of chemokines [42] and cytokines [1]. In the present
review we discuss protein oxidation and lipid peroxi-
dation in AD brain.

Aβ exist in various forms, i.e., monomer, oligomers
and fibrils. But the form of Aβ that is the toxic species
is still largely unknown. Our laboratory usedC. elegans
strains (CL 1175 and CL 4176) as anin vivo model to
test Aβ associated toxicity. Oxidative stress occurred
at 24 h ofin vivo production of human Aβ(1–42) but
no fibrillar Aβ was found [40]. The results of this
study are consistent with the notion that the oligomeric
form of Aβ is associated with oxidative stress inin vivo
conditions.

Oxidative stress may cause reversible and/or irre-
versible modifications on sensitive proteins leading to
structural, functional and stability modulations [84,
106]. Protein modifications are generally associated
with loss of function and may lead to either the un-
folding and degradation of the damaged proteins, or
aggregation leading to accumulation as cytoplasmic in-
clusions, as observed in age-related neurodegenerative
disorders [35]. Oxidized proteins are highly sensi-
tive to proteolytic degradation by the proteasome [46,
107]. The increase in the level of oxidized proteins
in AD brain is associated with loss of the activity of
the 20S proteasome, which represents a major enzyme
for the degradation of oxidized proteins [61,89,108,
116]. However, a recent study has questioned these
findings [44]. Other studies have shown that prolonged
oxidized proteins are more resistant to degradation by
the 20S proteasome [96,100].

Previous investigations have used immunoprecipita-
tion techniques to identify specific protein targets of
oxidation. This procedure is labor-intensive and time-
consuming and requires a good guess to the identity
of the protein at the beginning. That is, this approach
requires a prior knowledge of the protein so the correct
antibody for the protein of interest can be used. We

used this approach in initial studies to show that creatine
kinase (CK) is oxidatively modified in AD brain [2].
CK was already reported to show a diminished activ-
ity in AD brain [50]. Further, posttranslational mod-
ification of proteins can sometime alter the structure
of proteins [109], which could then prevent the forma-
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Table 1
Oxidatively modified proteins identified in AD and MCI brain using redox proteomics. Oxidized
proteins found in common between AD and MCI brain are indicated in bold

Functions AD MCI

Energy dysfunction CK,Enolase, TPI, PGM1,
LDH, GAPDH, ATP synthase al-
pha,Enolase
VDAC

Excitotoxicity EATT2,GS GS
Proteasomal dysfunction UCH L1, HSC 71 –
Lipid abnormalities
and Cholinergic dysfunction

Neuropoly-peptide h3 –

PH buffering and CO2 transport CA 2 –
Neuritic abnormalities DRP2,β-actin –
Tau hyperophosphoryaltion/
Aβ production/ mitosis

Pin 1 Pin 1

Synaptic abnormalities and LTP γ-SNAP –
Pyruvate Kinase M2 – Pyruvate Kinase M2

AD = Alzheimer’s disease, MCI= Mild cognitive impairment, CK= Creatine kinase BB, TPI=
Triose phosphate isomerase, PGM1=
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Table 2
Fold-increase of carbonylated proteins in AD IPL, AD Hippocampus, and MCI hip-
pocampus relative to respective control brain regions

Carbonylated proteins Fold-increase in Oxidation References

AD-Inferior Parietal Lobule
DRP-2 4.89± 0.52 27
α−enolase 3.21± 0.18 27
Heat shock cognate-71 2.24± 0.63 27
Creatine kinase BB 4.89± 0.52 26
Glutamine synthase 3.21± 0.18 26
Ubiquitin carboxyl-terminal hydrolase L-1 2.24± 0.63 26
AD-Hippocampus
Peptidyl prolylcis/trans isomerase 1 1.36± 0.55 112, 111
DRP-2 1.26± 0.45 112
Phosphoglycerate Mutase 1 212.30± 266.8 112
Carbonic anhydrase 3.27± 0.85 112
Enolase 1 2.55± 0.62 112
Triose phosphate isomerase 6.44± 2.28 112
Gamma-SNAP 3.15± 132 112
UCHL-1 2.10± 0.45 112
MCI-Hippocampus
Enolase 1 3.5 21
Glutamine synthetase 4.0 21
Pyruvate kinase M2 3.0 21
Peptidyl prolyl cis/trans isomerase 5.0 21

mal dysfunction and AD [26,112]. In addition, UCH
L-1 rescues Aβ-induced decreased synapatic function
and contextual memory [104], suggesting that oxida-
tively dysfunctional UCH L-1 could contribute to the
known memory defects in AD.

Lipid Abnormalities And Cholinergic Dysfunction
In AD brain neuropolypeptide h3, a phosphatidyle-

thanolamine binding protein [PEBP] or hippocampal
cholinergic neurostimulating peptide [HNCP], has been
identified as a specifically oxidized protein [28]. PEBP
plays an important role in maintaining phospholipid
asymmetry, which is important to maintain the struc-
ture and function of membranes [29,81]. The oxidation
of this protein could lead to the loss of PEBP activity
that may lead to loss of membrane asymmetry, which,
in turn, may initiate apoptosis and consequently to cell
death. Our laboratory showed that the addition of Aβ
(1–42) and HNE to synaptosomes lead to loss of phos-
pholipid asymmetry [81]. This enzyme also regulates
the levels of choline acetyltransferase, an enzyme that
is reported to have decreased activity in AD brain [63],
and this could be related to the reported cognitive de-
cline in AD.

Neuritic Abnormalities
Dihydropyrimidinase related protein 2 (DRP-2), and

β-actin are structural proteins that are found to be ox-
idized in AD brain [27,112]. DRP2 is normally ex-
pressed in developing brain and found only sparingly in

adult brain. The oxidation of actin could be related to
the loss of cytoskeletal network integrity and activation
of cellular events that may lead to apoptosis. The oxi-
dation of DRP-2 could impair interneuronal communi-
cation and repair and also interfere with the regulation
of the activity of collapsin, a protein that is involved
in dendritic elongation and pathfinding [47,60]. In AD
brain, oxidation of these proteins could be related to the
observed shortened dendritic length [32] and cognitive
impairment in AD [57].

Tau Hyperphosphorylation/Aβ Production/Prevention
Of Exit Of Neurons From Mitosis

Peptidyl-prolylcis/trans isomerase (Pin 1) was found
to be one of the oxidatively modified proteins in AD
hippocampus with an associated decrease in enzyme
activity [111,112]. This protein binds to a phospho-
rylated serine or threonine on the N-terminal side of
a proline of target proteins. Pin 1 catalyzes the con-
version of thecis to trans conformation and vice ver-
sa of the proline in target proteins, thereby conforma-
tionally regulating target protein activity. Pin 1 regu-
lates activity of protein phosphatase 2A (PP2A), which
dephosphorylates tau, and GSK-3β, which phosphory-
lates tau. Recent studies show that Pin1 is colocalized
with phosphorylated tau and also shows an in inverse
relationship between expression of tau and Pin 1 in
Alzheimer’s tautopathies [70]. Pin 1 also modulates
Aβ production by regulating APP, thereby keeping the
Aβ levels low [87]. Pin 1 protein also prevents neu-
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Table 3
Fold-increase of nitrated proteins in AD IPL and Hippocampus relative to respective control
brain regions

Nitrated proteins Fold-increase in Oxidation References

AD-Inferior Parietal Lobule
α−Enolase 3.12± 0.87 28
Triosephosphate isomerase 4.8± 2.09 28
Neuropolypeptide h3 7.65± 3.71 28
β−Actin 1.44± 0.68 28
l-Lactate dehydrogenase 1.62± 1.18 28
γ−Enolase 1.53± 1.11 28
AD-Hippocampus
Alpha- Enolase 3.47± 0.90 114
Carbonic anhydrase II 2.53± 0.72 114
Glyceraldehyde-3-phosphate dehydrogenase 2.18± 0.64 114
ATP synthase alpha chain 3.26± 1.70 114
Voltage-dependent anion-channel protein-1 5.11± 1.20 114

ronal cells from exiting mitosis. Therefore, oxidative-
ly dysfunctional Pin 1 may be critically important in
the known major pathologies of AD, i.e., hyperphos-
phorylation of tau (NFT), increased production of Aβ
(SP), and loss of neurons or synapses due to cell cycle
machinery failure [19,70,87,105].

Synaptic Abnormalities And LTP
γ
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