2011 PROGRAM

Proteins are exposed to a multitude of different surfaces and chemistries in vivo and vet, they must retain their stability in order to function. However, conversion of soluble native proteins into sheet-rich structured aggregates, such as amyloid and prion deposits can occur at interfaces. Protein stability and activity is also essential for use in various medical and analytical devices, such as biosensors, biocatalytic chips, biocompatible materials for implants, drug delivery vehicles, tissue engineering and beads or membranes for bioseparations. Although a vast experimental literature exists on the adsorption of specific proteins to various solid substrates under defined conditions, difficulties in determining the underlying reasons for the loss of stability and function remain. Many researchers have addressed particular aspects of protein behavior at interfaces through experiment, theory and molecular simulation. Here, we review recent results on protein stability and activity on solid heterogeneous and homogeneous substrates,

generally difficult to realize attributes. These include: the ability to accommodate living system-cells or microorganisms-as well as highly functional/chemically complex materials; to sustain or manipulate fluid flows; enable dynamic molecular patterning that is elicited both temporally and spatially: embed complex multiscale. non-planar/ curvalinear and 3D structural forms; and provide capacities for enabling useful forms of mechanics-flexure, folding, and actuation as examples. New materials and enabling means of fabrication are beginning to provide approaches to construct devices with properties of this type along with capacities for high performance. In this lecture I will describe a number of examples related to recently developed 3D materials platforms and microfluidic devices possessing utility to drive discovery in biological and bioanalytical chemistry. Of particular interest will be examples taken from our recent work involving integrated 3D fluidic platforms for sustaining and manipulating complex 3D cellular microcultures of neurons and novel integrated tools for chemical analysis that can be used to characterize both them and biologically relevant samples more generally. I will provide an overview of the rapidly developing fields of soft and direct write fabrication methods that can be used to construct these devices and suggest opportunities as well as needs for future progress.

11:10 a.m. Poster Session, Gallery, Young Library 12:30 p.m. Lunch 2:00 p.m. Dr. Paul S. Weiss University of California, Los Angeles New Dimensions in Patterning: Placement and Metrology of Chemical Functionality at All Scales

Chemists have a desire to construct materials atom-by-atom and molecule-by-molecule, and through the development of modern polymer chemistry, coordination chemistry, and crystal engineering. They have become moderately proficient at realizing target structures. recognition properties of DNA, making them both useful nanoscale building blocks and beneficial materials in their own right. This talk will focus on the history of these conjugates, as well as recent advances and potential applications of both the conjugates and their assemblies in medical research, gene regulation, therapeutics, and diagnostics.

The Department of Chemistry, University of Kentucky

presents the

Thirty-Seventh Annual Symposium on

Molecular Biology Chemistry &

Established by M. Benton Naff in memory of Anna S. Naff

Auditorium, William T. Young Library Friday, April 8, 2011 9:00 a.m.

Biochemistry at Interfaces

Georges Belfort is the Russell Sage Endowed Professor of Chemical and Biological Engineering, Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute

A native of South Africa, Professor Belfort joined the Rensselaer faculty in 1978 after a one-year sabbatical leave at Northwestern University and spending four years on the faculty of the School of Applied Science, Hebrew University, Jerusalem, Israel. Dr. Belfort received his Ph.D. degree in 1972 and his M.S. degree in 1969 from the University of California at Irvine in engineering, and his B.Sc. (Chemical Engineering) in 1963 from the University of Cape Town, Cape Town, South Africa. Prior to joining Rensselaer in 1978, he held the post of senior lecturer at the School of Applied Science, Hebrew University, Jerusalem, Israel from 1973 to 1977. Dr. Belfort has spent part or all of his (sabbatical) leaves at Cape Town University (1977-78), Yale University (1988), MIT (1988) Caltech (1988) and UC Berkeley (1996).

Georges Belfort is one of the premier academic scientists/engineers in the field of bioseparations engineering and is a leading academic chemical engineer in liquid-phase pressure-driven membrane-based processes. He has made seminal wide-ranging fundamental and applied research contributions to the understanding, design and application of pressure-driven membrane processes for the recovery of biological molecules. His research, both funda-mental and developmental, is conducted in the areas of membrane-separations engineering and surface science and the behavior of proteins at interfaces. In particular, the research involves design of new membrane modules with highly effi-cient mass-transfer characteristics, modification of membrane surfaces for reduced fouling, and use of genetic engineer-ing as a tool in the separation of biological molecules. Direct measurements are also made of intermolecular forces be-tween proteins and polymeric films for application in separations and marine fouling. Recent interest has focused on the effect of solid substrates on the conformation of proteins, the development of a new molecular two-dimensional imprint-ing technique, the use of helical hollow fiber membranes to fractionate foreign immunoglobulins from transgenic goat milk, and the modification new polymeric surfaces for synthetic membranes using photo-induced polymerization that exhibit low attraction to proteins (biotechnology applications) and natural organic matter (environmental applications).

Raph G. Nuzzo is the G. L. Clark Professor of Chemistry at the University of Illinois at Urbana-Champaign, a faculty he joined in 1991 and where he also holds an appointment as a Professor of Materials Science and Engineering. He received an AB degree with High Honors and Highest Distinction in Chemistry from Rutgers College in 1976 and earned a Ph.D. in Organic Chemistry from The Massachusetts Institute of Technology in 1980. He accepted the position of saculty in 1991. He is a fellow of the American Academy of Arts and Sciences, the World Innovation Foundation, and the American Vacuum Society. He awards include the Forschungspreis of the Alexander von Humboldt Foundation in 2011, co-recipient of the George E. Smith Award of the American Chemical Society in 2003 for original discoveries leading to the Adamson Award of the American Chemical Society in 2003 for original discoveries leading to the American Society in 2003 for original discoveries leading to the Society boards for both public and private entities. He is a cofounder of Langmuir as well as a member of member of any aveloping new forms of high performance electronics.

California at Berkeley in 1986. He was a post-doctoral member of technical staff at Bell Laboratories from 1986-1988 and a Visiting Scientist at IBM Almaden Research Center from 1988-1989. Before coming to UCLA in 2009, he was a Distinguished Professor of Chemistry and Physics at the Pennsylvania State University, where he began his academic career as an assistant professor in 1989. His interdisciplinary research group includes chemists, physicists, biologists, materials scientists, electrical and mechanical engineers, and computer scientists. Their work focuses on the atomic-Paul S. Weiss is the Director of the California NanoSystems Institute, Fred Kavli Chair in NanoSystems Sciences, and Distinguished Professor of Chemistry & Biochemistry and Materials Science & Engineering at the University of California, Los Angeles. He received his S.B. and S.M. degrees in chemistry from MIT in 1980 and his Ph.D. in chemistry from the University of California at Berkeley in 1986. He was a post-doctoral member of technical staff at Bell Laboratories

lar assemblies. He and his students have developed new techniques to expand the applicability and chemical specificity of scanning probe microscopies. They have applied these and other tools to the study of catalysis, self- and directed assembly, physical models of biological systems, and molecular and nano-scale electronics. They work to advance nan-ofabrication down to ever smaller scales and greater chemical specificity in order to connect, to operate, and to test molecular devices, and to connect to the biological and chemical worlds. He has published over 250 papers and patents, and has given over 400 invited and plenary lectures.

For additional information, contact Professor Yuguang Cai, Department of Chemistry, ycai3@email.uky.edu.

2011 Committee: Professor Yuguang Cai (Chair, Chemistry), Professor D. Allan Butterfield (Chemistr Professor Mark Watson (Chemistry), Professor Bruce Hinds (Chemical and Materials Engineering) Symposium supported by the Anna S. Naff Endowment Fund Allan Butterfield (Chemistry),