糖心vlog官方入口

Skip to main content

糖心vlog官方入口 Department Seminar

Organic Semiconductor-Incorporated Perovskites (OSiP) - A New Family of Hybrid Electronic Materials

Dr. Letain Dou

Abstract: Halide perovskites are exciting new semiconductors that show great promising in low cost and high-performance optoelectronics devices including solar cells, LEDs, photodetectors, lasers, etc. However, the poor stability is limiting their practical use. In this talk, I will present the development of a new family of stable organic-inorganic hybrid electronic materials, namely, Organic Semiconductor-Incorporated Perovskites (OSiP). Energy transfer and charge transfer between adjacent organic and inorganic layers are extremely fast and efficient, owing to the atomically-flat interface and ultra-small interlayer distance. Moreover, the rigid conjugated ligands dramatically enhance materials鈥 chemical stability and suppresses solid-state ion diffusion and electron-photon coupling, making them promising for many applications. Based on this, we demonstrate for the first time an epitaxial halide perovskite heterostructure with near atomically-sharp interface, which pave the way for perovskite nanoelectronics and nanophotonics. Finally, using this stable and solution-processable OSiPs, we demonstrate the fabrication of high-quality thin films, which enable highly stable and efficient solar cells and LEDs.

Bio: Dr. Letian Dou is currently the Charles Davidson Associate Professor of Chemical Engineering at Purdue University. He obtained his B.S. in 糖心vlog官方入口 from Peking University in 2009 and Ph.D in Materials Science and Engineering from UCLA in 2014. From 2014 to 2017, he was a postdoctoral fellow at the Department of 糖心vlog官方入口, University of California-Berkeley and Materials Science Division, Lawrence Berkeley National Laboratory. His research interest includes the design and synthesis of organic-inorganic hybrid materials and low-dimensional materials, fundamental understanding of the structure-property relationships, as well as applications in high performance electronic and optoelectronic devices. He is a recipient of AIChE Owens Corning Early Career Award (2022), NSF CAREER Award (2021), Advanced Materials Rising Stars Award (2021), Office of Naval Research Young Investigator Award (2019), Highly Cited Researcher in Cross-Fields (2019-2022), MIT Technology Review Innovators Under 35-China Award (2018), and MRS Graduate Student Award (2014).

Date:
-
Location:
CP 114

Manipulating Supramolecular Interactions in Solution and Soft-Matter Formulations

 

Kumari_profile

Abstract: Supramolecular gelation is a fascinating self-assembly process that closely mimics important natural and biological events. The supramolecular nature of such materials imparts the system with reversibility and adaptivity. The individual or collective contributions of various non-covalent interactions, such as hydrogen bonding, stacking, metal鈥搇igand coordination, host鈥揼uest interactions, and van der Waals interactions, are at the focal point of the structural evolution during an assembly process. Supramolecular gels have been studied extensively in the last few decades, mostly by exploiting the functional outputs for technological and medicinal applications. In comparison, pure structural investigations of supramolecular gel materials are rather limited. The lack of convincing structural data has multiple implications. The two most crucial factors for structural investigations are the experimental time scale and the sensitivity of the measurements towards structural evolution. Herein, we will investigate self-assembly processes of supramolecular nanoassmeblies under ambient versus non-ambient conditions. Specifically, we will probe how real-time measurements give valuable insights about nucleation and self-assembly of materials. The information obtained yields valuable information about structure-function correlation of materials which could have applications in several areas, including pharmaceutics and personal care. 

Kumar_Photo

Bio: Dr. Harshita Kumari, is an Associate Professor in the Division of Pharmaceutical Sciences at University of Cincinnati. Dr. Kumari鈥檚 work in the area of solution chemistry of supramolecular complexes is widely recognized. She integrates neutron scattering with supramolecular chemistry to unravel structural altercations in solution.

Her current research focuses on integrating principles of modern biophysics into material and formulation science towards the development of novel skin care, oral care and hair care products. Her research projects focus on understanding mechanisms of delivery and deposition of actives onto the skin/hair and elucidating the parameters to control them. In addition, her research focuses on developing methods to construct novel nanometric delivery vehicles, based on the principles of self-assembly and molecular recognition. Her work is published in several peer reviewed journals.

Date:
-
Location:
CP 114

48th Annual Naff Symposium

Oxidative Stress in Neurodegeneration: Focus on Alzheimer Disease

Schedule of Events - April 21, 2023

8:00am

Registration and Continental Breakfast
W.T. Young Library Alumni Gallery

8:30am

Welcome -

Dr. Eli Capilouto, President, 糖心vlog官方入口

Dr. Robert DiPaola, Provost, 糖心vlog官方入口

Dr. Lisa Cassis, Vice President for Research, 糖心vlog官方入口

Dr. Ana Franco-Watkins, Dean, College of Arts and Sciences, 糖心vlog官方入口

Dr. Mark Lovell, Chair, Department of 糖心vlog官方入口, 糖心vlog官方入口

Dr. D. Allan Butterfield, Organizer, 48th Naff Symposium, 糖心vlog官方入口

9:00am

Prof. Barry Halliwell, National University of Singapore
"Is Ergothioneine a Factor Against Neurodegeneration and a Promotor of Healthy Ageing?"

10:15am

Prof. Marzia Perluigi, Sapienza University of Rome
"Redox Imbalance and Metabolic Defects in the Brain of Down Syndrome Individuals: a Synergistic Path to Alzheimer's Neurodegeneration"

11:30am

Lunch & Break

1:30pm

Prof. Mark Mattson, Johns Hopkins University
"Sculptor and Destroyer"

3:00pm

Poster Session
Jacobs Science Building, Atrium

4:15pm

Presentation of Poster Awards
Jacobs Science Building, Atrium

4:30pm

Close of the 48th Naff Symposium
Jacobs Science Building, Atrium

 

Speakers

Prof. Barry Halliwell

National University of Singapore

D. Phil. (Oxford), D. Sc. (London) Chairman, BMRC Advisory Council (BMAC), Agency for Science, Technology & Research (A*STAR) Distinguished Professor, Department of Biochemistry , National University of Singapore (NUS) Senior Advisor, Academic Appointments and Research Excellence, Office of the Senior Deputy President and Provost, NUS Program Leader, Neurobiology Research Program, Life Sciences Institute

Professor Halliwell graduated from Oxford University with BA (first class honours) and D.Phil degrees. He holds a Doctor of Science degree from the University of London. He was a faculty member with King鈥檚 College London (1974-2000) and held a prestigious Lister Institute Research fellowship. He was a Visiting Research Professor of Internal Medicine and Biochemistry at the University of California Davis (1995-1999). He now holds several key positions in Singapore, as indicated above. Professor Halliwell is recognized for his seminal work on the role of free radicals and antioxidants in biological systems, being one of the world鈥檚 most highly-cited researchers with a Hirsch-Index of 168 (Based on Scopus, Jan 2023). His Oxford University Press book with John Gutteridge, Free Radicals in Biology and Medicine, now in its fifth edition (2015), is regarded worldwide as an authoritative text. He was honored as a Citation Laureate (2021) for pioneering research in free-radical chemistry including the role of free radicals and antioxidants in human disease. The distinction is awarded by Clarivate to researchers whose work is deemed to be of 鈥淣obel Class鈥 as they are among the most influential, even transformative, in their fields. He was one of 16 scientists (only three in 糖心vlog官方入口) listed in the 2021 Hall of Citation Laureates.

Prof. Marzia Perluigi

Sapienza University of Rome

Marzia Perluigi, PharmD, Ph.D., Head of Laboratory of Redox Biochemistry in Neuroscience (LRBN). Professional appointments: Professor of Biochemistry, Department of Biochemical Sciences 鈥淎. Rossi Fanelli" 鈥 Medical School Sapienza University of Rome. Fields of Expertise: Biochemistry and cell biology.

The major research interest is the study of the role of oxidative stress in Down Syndrome (DS) and Alzheimer Disease (AD). Projects involve both the analysis of post-mortem brains, biological fluids, and cellular and animal models of the diseases. Current projects focus on defects of energy metabolism, failure of protein quality control (UPS and autophagy), impairment of mitochondrial activity, both in DS and AD. Further, preclinical studies are ongoing to test the neuroprotective effects of selected compounds able to prevent/slow the onset of dementia.

Prof. Mark Mattson

Johns Hopkins University

Mark Mattson is the former Chief of the Laboratory of Neurosciences at the National Institute on Aging and is now on the faculty of Neuroscience at Johns Hopkins University School of Medicine. His research has advanced an understanding of the cellular signaling mechanisms that control the formation and plasticity of neuronal networks in the brain, and cellular and molecular mechanisms of brain aging and neurodegenerative disorders. His research has also elucidated how the brain responds adaptively to challenges such as fasting and exercise, and he has used that information to develop novel interventions to promote optimal brain function throughout life. Dr. Mattson is among the most highly cited neuroscientists in the world with more than 900 publications and 200,000 citations. He was elected a Fellow of the American Association for the Advancement of Science and has received many awards including the Metropolitan Life Foundation Medical Research Award and the Alzheimer鈥檚 Association Zenith Award.

Mattson is the author of the book "The Intermittent Fasting Revolution: The Science of Optimizing Health and Enhancing Performance."

 

On Thursday, April 20th, the day before the Naff Symposium, the 糖心vlog官方入口 Department also is hosting a Roundtable seminar involving three Department of Biochemistry faculty members from the Sapienza University of Rome, all of whom do research on Alzheimer disease and Down syndrome (persons with DS nearly always exhibit Alzheimer disease neuropathology in brain and dementia later in life).  Prof. Marzia Perluigi, one of our Naff Symposium presenters, also is from the Department of Biochemistry at the Sapienza University of Rome. This Roundtable seminar will begin at 1:30 pm in CHEM-PHYS Room 114 with a Q&A session from 2:30-3:00 pm.

Click here for more information about the event.

 Seminar Flyer

 

2023 Naff Symposium Committee

Prof. Allan Butterfield - (糖心vlog官方入口) [Chair]

Prof. Marcelo Guzman - (糖心vlog官方入口)

- (Toxicology/Cancer Biology)

Date:
-
Location:
W.T. Young Library Auditorium

Exit Seminar: "Nanomaterial Synthesis and Real Time Investigation of Thermal Effects on Nanomaterial and Nano-Interfaces for Real World Applications"

AbstractAs interest in nanomaterials and nanotechnology continues to grow, so does the need for more efficient and economical synthesis methods to keep up with the demand. Nanomaterials, having at least one critical dimension measuring less than 100 nm, could exhibit unique properties compared to their bulk counterparts. These unique properties, which include electrical, optical, thermal, mechanical, and magnetic properties, influence the integration and utilization of these materials into devices and applications. The applications for nanomaterials are seemingly endless as they have functions in energy, biomedical, environmental, and many more. Working to develop different morphologies and sizes of nanomaterials will further help expand its utility. With the use of advanced characterization techniques such as in situ transmission electron microscopy (TEM), real time studies on the effects of external forces on nanomaterials are possible under controlled environments. This will give insight on how nanomaterials will perform in real world applications and will allow for the development of superior nanomaterials and applications.

The three sections of this talk will focus on the solid-state synthesis of crystalline nanomaterials with specific morphology as well as the real time observation of thermal treatments on the stability and degradation of nanomaterials via in situ TEM. The first two sections concentrate on the hydrothermal and chemical vapor deposition synthesis and materials characterization of nanomaterials with magnetic and semiconductor properties. The third section focuses on the in situ observation of the reaction of nanomaterial and nano-interfaces as they are subjected to increased temperatures within the TEM. The works presented here show the versatility of nanomaterial syntheses and demonstrate the application of real time advanced electron microscopy techniques to further study the structure-property relationships of nanomaterials.

Graduate Student Profile

Date:
-
Location:
CP-114

Exit Seminar: "The Application of Photoelectron Spectroscopies in Analyzing the Impact of Interfacial Energetics on Perovskite Solar Cells"

Abstract: In recent years, organic-inorganic metal halide perovskites (HP) have garnered tremendous attention in photovoltaic research. This attention is attributed to their low cost and excellent optoelectronic properties, including large absorption coefficients, tunable bandgaps, long charge carrier diffusion lengths, and low trap state densities. Inverted p-i-n architecture perovskite solar cells (PSCs) are of intense interest and are generally regarded as more amenable to low-temperature solution processing. Nevertheless, the development of inverted PSCs is lagging the conventional architecture devices. Imperfect energy level alignments and charge carrier recombination, especially at the interface between perovskite and electron transport layers (ETLs), are two main factors suppressing the power conversion in inverted PSCs.

Organic semiconductors (OSCs), including 蟺-conjugated polymers and small molecules, display distinct advantages in terms of low-cost, lightweight, wide variety, easy solution-processed manufacturing as well as excellent mechanical flexibility. The molecule design produces numerous organic semiconductors with desired properties in application of various advanced organic electronics devices. However, the performance of OSCs-based devices is left behind their inorganic counterparts due to the lower carrier density and mobility. Molecular doping which provides a route to significantly enhance the electric properties, attracts attentions progressively.

Tuo Liu鈥檚 work during his PhD focused on the applications of photoelectron spectroscopies on the studies of perovskite solar cells and organic semiconductor-based electronics. The first work carried out how the surface ligands impact interfacial energetics and charge carrier dynamics at methylammonium lead iodide (MAPbI3)/C60 interfaces. The frontier electronic energy levels at perovskite/C60 interface are directly probed by ultraviolet photoelectron spectroscopy (UPS) and low energy inverse photoelectron spectroscopy (LEIPS), providing evidence of interfacial energetics reconstruction caused by surface ligands with different dipoles. Ultrafast absorption/reflectance spectroscopies and transient photovoltage/photocurrent are utilized in comprehensively picturing the charge dynamics in films and devices. The following work reports the doping mechanism in the photoactivated p-doping of hole-transporting material (HTM) to enhance hole extraction for perovskite/textured silicon tandem solar cells, making the device performance less sensitive to the variation of hole transport layer thickness. Last several collaborations works are based on the doping behaviors in different doped organic semiconductors, with applications in organic solar cells and thermoelectrics.

Graduate Student Profile

Date:
-
Location:
CP114

Exit Seminar: "Cell-engineered Vesicles for Therapeutic Delivery and Immunomodulatory Applications"

Abstract: Development of a new kind of drug delivery system (DDS) that could efficiently deliver therapeutics to the cell of interest would allow us to accomplish cell-specific drug delivery while eliminating systemic toxicity. Although nanocarriers including endogenously released extracellular vesicles (EEVs), liposomes, and small molecules seem to be promising drug delivery systems,  biological challenges persist for their use in clinical applications. Here, we demonstrate nanovesicles engineered by fragmenting cellular membranes  can be exploited as versatile DDSs for therapeutics delivery as well as immunomodulatory functions. Cell-engineered vesicles were produced by cavitating cells using nitrogen gas at high pressure followed by serial centrifugation. Cell-engineered vesicles (CEVs) are smaller in size, can be generated in high yields, easily loaded with both lipophilic as well as hydrophilic cargo, and exhibit cell-targeting specificity both in vitro as well as in in vivo.

Cell-engineered vesicles generated from immune cells offer additional advantages as immunomodulatory therapeutic agents. Herein, we demonstrate that macrophage-engineered vesicles (MEVs) generated from macrophages, immune effector cells, can modulate the physiological states of immune cells including macrophages and microglia. While MEVs generated from anti-inflammatory (M2) macrophages re-program neuro-toxic pro-inflammatory (M1) macrophages towards M2-like phenotype, MEVs generated from M1 macrophages re-polarize M2  macrophages towards an anti-tumor M1-like phenotype. In addition, in vitro and in vivo delivery of cargo is facilitated by the ability of these vesicles to selectively target the same cell type from which they originated.

Programming cell-engineered nanovesicles through the targeted over-expression of specific membrane-bound ligands transforms them into a more potent immunomodulatory as well as therapeutic delivery platform. We tailored membrane-derived nanovesicles to have unique immunomodulatory features, including the potential to regulate immune cell polarization in both directions. These programmable nanovesicles adorned with certain membrane-bound ligands are capable of targeting particular cell types. Using programmed nanovesicles produced from macrophages enhances immune cell reprogramming to both proinflammatory and anti-inflammatory cells. Additionally, the incorporation of cancer cell-targeting moieties into the vesicle membrane enhanced the transport and absorption of therapeutically loaded nanovesicles, hence increasing their effectiveness.

Graduate Student Profile

Date:
-
Location:
CP114

"An Overview of Environmental Research at the U.S Army Engineer Research and Development Center"

Dr. Ferguson will be presenting a broad overview of her research portfolio and Dr.'s. Glasscott and Kimball will briefly discuss their specific research. The presentation will shed light on an alternative career path and should be of interest to a broad array of students. 

Date:
-
Location:
CP 114

Exit Seminar: "Surface Modification of Carbon-Based Electrodes for Electrochemical Conversion Processes: Oxygen Reduction Reaction and Bicarbonate Conversion"

Abstract: Oxygen reduction reaction (ORR) and conversion of bicarbonate into value-added chemicals are two significant electrochemical processes for energy storage and conversion. ORR is an important electrochemical reaction in fuel cells and metal air batteries that provides power conversion and storage capacity, respectively, for portable electronics and electric vehicles. However, the performance of catalysts (e.g., platinum-based) is critically limited by slow kinetics, inefficient four-electron pathway and surface deactivation. This limited performance of platinum-based catalysts, the scarcity of platinum, and vulnerable supply chains for critical minerals require the development of alternative electrocatalysts now more than ever. 

Carbon-based materials possess several key properties that are beneficial for catalytic applications such as high electric conductivity, large surface area, inert electrode surface and low cost. Catalytic activity of carbon-based electrode can be promoted by tailoring surface and structure through the incorporation of heteroatom dopants. This work focus on synthesis of electrocatalysts and their surface modification to achieve effective ORR performance in alkaline media. The ORR performance of nitrogen (N) and boron (B) co-doped carbon nano onions (CNOs). In this work annealing temperature was found a crucial factor in the synergistic benefit of N and B towards ORR. Furthermore, this research was extended to discuss the impacts of nitrogen heteroatom and copper nanoparticles on ORR performance.

Moreover, electrocatalytic carbon dioxide (CO2) reduction (CO2RR) in a membrane electrode assembly was investigated. Atmospheric CO2 has significantly increased in last two decades. Since CO2 is a primary greenhouse gas emitted on earth, it is imperative to suppress the concentration of emitted CO2. While the regulation of CO2 emissions is critical, CO2 capture and storage (CCS), and biological, chemical, and electrochemical conversions are promising approaches to reduce atmospheric CO2 concentration. In electrochemical conversion, a common method employs the feed of high-purity compressed CO2 gas into an electrolyzer. This method, however, is not economically viable because it requires the release and/or pressurization of CO2 from captured CO2 solution, which are energy-intensive. To resolve this issue, aqueous carbonate/bicarbonate (CO32-/HCO3-) transported from upstream carbon capture process can be directly fed into an electrolyzer. We demonstrate that a cationic exchange membrane coated with a thin copper film can efficiently convert bicarbonate to C1-C2 products such as formic acid and acetic acid. Both liquid and gas products were quantified by using proton nuclear magnetic resonance (H1 NMR) and gas chromatography, respectively. 

The studies herein highlight the importance of structure modification of catalysts, surface chemistry, and membrane-electrode interface to improve the efficiency and selectivity of ORR and CO2RR processes. 

 

Student Profile

Date:
-
Location:
CP-114

Exit Seminar: "Development of Fluorescent Based Approaches to Understand Astrocyte Biology in the Context of Nicotine and Nicotinic Receptor Activity"

Abstract: Smoking and tobacco use (STU) is a major global health problem and worldwide more than six million people die due to tobacco related diseases each year. Although majority of smokers try to quit smoking several times in their life, traditional therapeutic approaches, which focus only on neuronal cells, have a very low success rate.   Understanding the effect of nicotine on glial cells, synaptic communication and blood vasculature in the brain can provide further insights on the neurobiology of substance abuse and can potentially help to design better therapeutic approaches. Glial cells are nonexcitable cells in the brain which do not generate action potentials. Recently many additional functions of glial cells have been discovered which have challenged the traditional neuro-centric view in neuroscience. Astrocytes are major glial cells which regulate synapse, maintain homeostasis, maintain blood brain barrier, and regulate blood flow. Processes from one astrocyte can interact with as many as 10,000 synapses. Astrocyte also couple with blood vasculature and play key role in supply of oxygen and nutrients to the brain. In these studies, we investigated the effect of nicotine on astrocyte morphology and functional activity. By using tissue clearing and time lapse fluorescence imaging approaches, we showed nicotine induces morphological rearrangement of astrocytic processes mediated via nicotinic receptors. We also studied the functional consequences of astrocytic rearrangement in the brain in terms of cytokine release, cell viability and calcium activity. To further characterize the subcellular astrocyte calcium activity in physiological and pathological conditions, we developed a GCaMP based genetic probe by targeting the endoplasmic reticulum (ER) in astrocytes. This probe was shown to measure astrocyte specific calcium activity in the periphery of the ER in cell culture and in vivo. As astrocytic processes form intricated networks with synapses, we also developed a single molecule fluorescence imaging approach to characterize synaptic nicotinic receptors and observed nicotine-induced stoichiometric shift in post synaptic nicotinic receptors in the brain. By using pH sensitive super ecliptic pHluorin (SEP) probe, we showed nicotine also alters the trafficking of nicotinic receptors from the ER to the plasma membrane.  In summary, we developed and applied several fluorescence microscopy-based tools to study the astrocyte activity in various physiological conditions. Nicotine was shown to alter the morphological and functional activity of astrocytes through nicotinic receptor activation. We also developed a genetic probe to image calcium activity in astrocytic processes. Our studies of synaptic nicotinic receptors showed nicotine alters their stoichiometry from low affinity subtype to high affinity subtype. These studies highlight the importance of fluorescence-based approach to study tobacco use disorder and provide further insights on nicotinic receptor pharmacology and astrocyte biology.

Graduate Student Profile

Date:
-
Location:
CP-114

Exit Seminar: "Translating chemistry, structure, and processing to the solid-state morphology and function of organic semiconductors through computational modeling and simulations"

Chamikara Karunasena

Graduate Student Profile

 

 

 

 

 

 

 

 

Abstract: The immense synthetic design space and material versatility have driven the exploration and development of organic semiconductors (OSC) over several decades. While many OSC designs focus on the chemistries of the molecular or polymer building blocks, a priori, multiscale control over the solid-state morphology is required for effective application of the active layer in a given technology. However, molecular assembly during solid-state formation is a complex function interconnecting the building block chemistry and the processing environment. Insufficient knowledge as to the how these aspects engage, especially at the atomistic and molecular scales, have so far limited the ability to predict OSC solid-state morphology, leaving Edisonian approaches as the stalwart methods. Therefore, through multiscale simulations combining atomistic quantum scale modeling and modern advanced sampling molecular dynamics (MD), we aim to establish first principles understanding required to synthetically regulate solid-state morphology of organic semiconductors (OSC) as a function of molecular chemistry and processing. In turn we try to understand the deceivingly simple yet complex mechanisms behind molecular aggregation and crystallization of OSC. Simultaneously, we develop semi-to-fully automated high-throughput schemes to automate the complex and labor-intensive analyses to generate data based on various crystal structures in different crystallization environments. Ultimately, we aim to bridge molecular-scale information revealed on solid-state physical organization, understood in the context of chromophore chemistry and the molecular environment, with the macro scale properties to uncover useful guidelines for rational design and morphology regulation of OSC systems.

Date:
-
Location:
CP-114
Tags/Keywords:
Subscribe to 糖心vlog官方入口 Department Seminar